## The amount of time it takes Emma to wait for the train is continuous and uniformly distributed between 4 minutes and 11 minutes. What is the

Question

The amount of time it takes Emma to wait for the train is continuous and uniformly distributed between 4 minutes and 11 minutes. What is the probability that it takes Emma more than 5 minutes to wait for the train?

in progress
0

Math
3 weeks
2021-09-26T18:58:12+00:00
2021-09-26T18:58:12+00:00 1 Answer
0
## Answers ( )

Answer:85.71% probability that it takes Emma more than 5 minutes to wait for the train

Step-by-step explanation:An uniform probability is a case of probability in which each outcome is equally as likely.For this situation, we have a lower limit of the distribution that we call a and an upper limit that we call b.

The probability that we find a value X lower than x is given by the following formula.

Uniformly distributed between 4 minutes and 11 minutes.This means that .

What is the probability that it takes Emma more than 5 minutes to wait for the train?Either it takes 5 or less minutes, or it takes more than 5 minutes. The sum of the probabilities of these events is 1. So

We want to find . So

85.71% probability that it takes Emma more than 5 minutes to wait for the train